

AR (Acetyl Lys632) rabbit pAb

Catalog No :	YK0099
Reactivity :	Human;Mouse
Applications :	WB;ELISA
Target :	Androgen Receptor
Fields :	>>Oocyte meiosis;>>Pathways in cancer;>>Chemical carcinogenesis - receptor activation;>>Prostate cancer
Gene Name :	AR DHTR NR3C4
Protein Name :	AR (Acetyl Lys632)
Human Gene Id :	367
Human Swiss Prot	P10275
Mouse Gene Id :	11835
Mouse Swiss Prot	P19091
No : Rat Gene Id :	24208
Rat Swiss Prot No :	P15207
Immunogen :	Synthesized peptide derived from human AR (Acetyl Lys632)
Specificity :	This antibody detects endogenous levels of Human,Mouse AR (Acetyl Lys632)
Formulation :	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.
Source :	Polyclonal, Rabbit,IgG
Dilution :	WB 1:1000-2000 ELISA 1:5000-20000

Dest 10013 101 IIIIIIIdillolo	gy research
Purification :	The antibody was affinity-purified from rabbit serum by affinity-chromatography
	using specific immunogen.
Concentration :	1 mg/ml
Storage Stability :	-15°C to -25°C/1 year(Do not lower than -25°C)
Observed Band :	105kD
Background :	disease:Defects in AH are the cause of androgen insensitivity syndrome (AIS) [MIM:300068]; previously known as testicular feminization syndrome (TFM). AIS is an X-linked recessive form of pseudohermaphroditism due end-organ resistance to androgen. Affected males have female external genitalia, female breast development, blind vagina, absent uterus and female adnexa, and abdominal or inguinal testes, despite a normal 46,XY karyotype., disease:Defects in AR are the cause of androgen insensitivity syndrome partial (PAIS) [MIM:312300]; also known as Reifenstein syndrome. PAIS is characterized by hypospadias, hypogonadism, gynecomastia, genital ambiguity, normal XY karyotype, and a pedigree pattern consistent with X-linked recessive inheritance. Some patients present azoospermia or severe oligospermia without other clinical manifestations, disease:Defects in AR are the cause of spinal and bulbar muscular atrophy X-linked type 1 (SMAX1) [MIM:313200]; also known as Kennedy disease. SMAX1 is an X-linked recessive form of spinal muscular atrophy. Spinal muscular atrophy refers to a group of neuromuscular disorders characterized by degeneration of the anterior horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy. SMAX1 occurs only in men. Age at onset is usually in the third to fifth decade of life, but earlier involvement has been reported. It is characterized by slowly progressive limb and bulbar muscle weakness with fasciculations, muscle atrophy, and gynecomastia. The disorder is clinically similar to classic forms of autosomal spinal muscular atrophy. SMAX1 is caused by trinucleotide CAG repeat expansion. In SMAX1 patients the number of GIn ranges from 38 to 62. Longer expansions result in earlier onset and more severe clinical manifestations of the disease., disease::Defects in AR may play a role in metastatic prostate cancer. The mutated receptor stimulates prostate growth and metastases development despite of androgen ablation. This treatment can reduce primary and metastatic lesions

corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3., miscellaneous: In the absence of ligand, steroid hormone receptors are thought to be weakly associated with nuclear components; hormone binding greatly increases receptor affinity. The hormone-receptor complex appears to recognize discrete DNA sequences upstream of transcriptional start sites.,miscellaneous:The level of tyrosine phosphorylation may serve as a diagnostic tool to predict patient outcome in response to hormone-ablation therapy. Inhibition of tyrosine phosphorylation may be an effective intervention target for hormone-refractory prostate cancer.,miscellaneous:Transcriptional activity is enhanced by binding to RANBP9.,online information:Androgen receptor entry,polymorphism:The poly-Gln region of AR is highly polymorphic and the number of Gln varies in the population (from 17 to 26). A smaller size of the poly-Gln region may be associated with the development of prostate cancer.,polymorphism:The poly-Gly region of AR is polymorphic and ranges from 24 to 31 Gly. A poly-Gly region shorter or equal to 23 may be associated with the development of androgenetic alopecia., PTM: Phosphorylated in prostate cancer cells in response to several growth factors including EGF. Phosphorylation is induced by c-Src kinase (CSK). Tyr-534 is one of the major phosphorylation sites and an increase in phosphorylation and Src kinase activity is associated with prostate cancer progression., PTM: Sumoylated on Lys-386 (major) and Lys-520., similarity: Belongs to the nuclear hormone receptor family., similarity: Belongs to the nuclear hormone receptor family. NR3 subfamily., similarity: Contains 1 nuclear receptor DNA-binding domain., subunit: Binds DNA as a homodimer. Part of a ternary complex containing AR, EFCAB6/DJBP and PARK7. Interacts with HIPK3 and NR0B2 in the presence of androgen. The ligand binding domain interacts with MYST2/HBO1 in the presence of dihydrotestosterone. Interacts with EFCAB6/DJBP, PELP1, PQBP1, RANBP9, RBAK, SPDEF, SRA1, TGFB1I1, ZNF318 and RREB1. Interacts with ZMIZ1/ZIMP10 and ZMIZ2/ZMIP7 which both enhance its transactivation activity. Interacts with SLC30A9 and RAD54L2/ARIP4 (By similarity). Interacts via the ligand-binding domain with LXXLL and FXXLF motifs from NCOA1, NCOA2, NCOA3, NCOA4 and MAGEA11. The AR N-terminal poly-Gln region binds Ran resulting in enhancement of AR-mediated transactivation. Ran-binding decreases as the poly-Gln length increases. Interacts with HIP1 (via coiled coil domain).,tissue specificity:Isoform 2 is mainly expressed in heart and skeletal muscle.,

Function :

urogenital system development, in utero embryonic development, reproductive developmental process, transcription,transcription, DNA-dependent, regulation of transcription, DNA-dependent, regulation of transcription from RNA polymerase II promoter, intracellular signaling cascade, cell-cell signaling, sex determination, sex differentiation, cell death, cell proliferation, regulation of cell size, gonad development, male gonad development, response to endogenous stimulus, response to hormone stimulus, embryonic development ending in birth or egg hatching, positive regulation of biosynthetic process, response to organic substance, positive regulation of macromolecule biosynthetic process, positive regulation of gene expression, cell growth,death, somatic sex determination, male somatic sex determination, male sex determination, steroid

Subcellular Location :	Nucleus . Cytoplasm . Detected at the promoter of target genes (PubMed:25091737). Predominantly cytoplasmic in unligated form but translocates to the nucleus upon ligand-binding. Can also translocate to the nucleus in unligated form in the presence of RACK1
Expression :	[Isoform 2]: Mainly expressed in heart and skeletal muscle. ; [Isoform 3]: Expressed in basal and stromal cells of the prostate (at protein level).

Products Images