Best Tools for immunology Research

FGF Receptor 2 (Phospho Ser782) rabbit pAb

Catalog No:	YP1672
Reactivity :	Human;Mouse;Rat
Applications:	WB
Target :	FGF Receptor 2
Fields :	>>EGFR tyrosine kinase inhibitor resistance;>>MAPK signaling pathway;>>Ras signaling pathway;>>Rap1 signaling pathway;>>Calcium signaling pathway;>>Endocytosis;>>PI3K-Akt signaling pathway;>>Signaling pathways regulating pluripotency of stem cells;>>Regulation of actin cytoskeleton;>>Pathways in cancer;>>Prostate cancer;>>Gastric cancer;>>Central carbon metabolism in cancer

Gene Name: FGFR2 BEK KGFR KSAM
Protein Name: \quad FGFR2 (Phospho-Ser782)
Human Gene Id: 2263

Human Swiss Prot P21802 No:	
Mouse Gene Id :	14183
Mouse Swiss Prot	P21803
No:	
Immunogen :	Synthesized peptide derived from human FGFR2 (Phospho-Ser782)
Specificity :	This antibody detects endogenous levels of FGFR2 (Phospho-Ser782) at Human, Mouse,Rat

Formulation : \quad Liquid in PBS containing 50\% glycerol, 0.5% BSA and 0.02% sodium azide.

Source : Polyclonal, Rabbit,lgG

Dilution: WB 1:500-2000

Best Tools for immunology Research

Purification :

Concentration :

Storage Stability :

Molecularweight :

Background :

Function :

Sort :

The antibody was affinity-purified from rabbit serum by affinity-chromatography using specific immunogen.

Subcellular	Cell membrane; Single-pass type I membrane protein. Golgi apparatus.
Location:	Cytoplasmic vesicle. Detected on osteoblast plasma membrane lipid rafts. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 1]: Cell membrane; Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 3]: Cell membrane; Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 8]: Secreted.; [Isoform 13]: Secreted.

Expression: \quad Blood,Brain,Cerebellum,Cornea,Mammary gland,Neonatal brain stem,Pla
$-15^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C} / 1$ year(Do not lower than $-25^{\circ} \mathrm{C}$)

90kD

The protein encoded by this gene is a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and throughout evolution. FGFR family members differ from one another in their ligand affinities and tissue distribution. A full-length representative protein consists of an extracellular region, composed of three immunoglobulin-like domains, a single hydrophobic membrane-spanning segment and a cytoplasmic tyrosine kinase domain. The extracellular portion of the protein interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member is a high-affinity receptor for acidic, basic and/or keratinocyte growth factor, depending on the isoform. Mutations in this gene are associated with Crouzon syndrome, Pfeiffer syndrome, C
catalytic activity:ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine phosphate.,disease:Defects in FGFR2 are a cause of Apert syndrome (APRS) [MIM:101200]; also known as acrocephalosyndactyly type 1 (ACS1). APRS is a syndrome characterized by facio-cranio-synostosis, osseous and membranous syndactyly of the four extremities, and midface hypoplasia. The craniosynostosis is bicoronal and results in acrocephaly of brachysphenocephalic type. Syndactyly of the fingers and toes may be total (mitten hands and sock feet) or partial affecting the second, third, and fourth digits. Intellectual deficit is frequent and often severe, usually being associated with cerebral malformations.,disease:Defects in FGFR2 are a cause of Jackson-Weiss syndrome (JWS) [MIM:123150]. JWS is an autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the fe

Cell membrane; Single-pass type I membrane protein. Golgi apparatus. Cytoplasmic vesicle. Detected on osteoblast plasma membrane lipid rafts. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 1]: Cell membrane; Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 3]: Cell membrane; Single-pass type I membrane protein. After ligand binding, the activated receptor is rapidly internalized and degraded.; [Isoform 8]: Secreted.; [Isoform 13]: Secreted.

Best Tools for immunology Research
No4 :
1
Host :
Rabbit

Modifications:
Phospho

Products Images

