

TrxR2 Polyclonal Antibody

Catalog No :	YT4752		
Reactivity :	Human;Mouse;Rat		
Applications :	WB;IHC;IF;ELISA		
Target :	TrxR2		
Fields :	>>Selenocompound metabolism;>>Pathways in cancer;>>Hepatocellular carcinoma		
Gene Name :	TXNRD2		
Protein Name :	Thioredoxin reductase 2 mitochondrial		
Human Gene Id :	10587		
Human Swiss Prot	Q9NNW7		
Mouse Gene Id :	26462		
Mouse Swiss Prot	Q9JLT4		
No : Rat Gene Id :	50551		
Rat Swiss Prot No :	Q9Z0J5		
Immunogen :	The antiserum was produced against synthesized peptide derived from human TRXR2. AA range:471-520		
Specificity :	TrxR2 Polyclonal Antibody detects endogenous levels of TrxR2 protein.		
Formulation :	Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.		
Source :	Polyclonal, Rabbit,IgG		
Dilution :	WB 1:500 - 1:2000. IHC 1:100 - 1:300. ELISA: 1:10000 IF 1:50-200		

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Purification :	The antibody was affinity-purified from rabbit antiserum by affinity- chromatography using epitope-specific immunogen.		
Concentration :	1 mg/ml		
Charles and Charle illitered	15% C to 05% $C/1$ where $(D_{2}, a_{2}, b_{3}, b_{$		
Storage Stability :	-15°C to -25°C/1 year(Do not lower than -25°C)		
Observed Band :	56kD		
Cell Pathway :	Pyrimidine metabolism;		
Background :	thioredoxin reductase 2(TXNRD2) Homo sapiens This gene encodes a member of the class I pyridine nucleotide-disulfide oxidoreductase family. The encoded protein is a selenocysteine-containing flavoenzyme that maintains thioredoxins in a reduced state, thereby playing a key role in regulating the cellular redox environment. Mammals have three related thioredoxin reductases. This gene encodes a mitochondrial form important for scavenging of reactive oxygen species in mitochondria. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Sep 2013],		
Function :	catalytic activity:Thioredoxin + NADP(+) = thioredoxin disulfide + NADPH.,cofactor:FAD.,function:Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox- regulated cell signaling.,miscellaneous:The active site is a redox-active disulfide bond. The selenocysteine residue is essential for enzymatic activity.,sequence caution:Translated as Sec.,similarity:Belongs to the class-I pyridine nucleotide- disulfide oxidoreductase family.,subunit:Homodimer.,tissue specificity:Highly expressed in the prostate, ovary, liver, testis, uterus, colon and small intestine. Intermediate levels in brain, skeletal muscle, heart and spleen. Low levels in placenta, pancreas, thymus and peripheral blood leukocytes. According to PubMed:10608886, high levels in kidney, whereas according to PubMed:9923614 levels are low.,		
Subcellular	Mitochondrion .		
	Highly expressed in the prostate eveny liver testic starus, color and small		
Expression :	intestine. Intermediate levels in brain, skeletal muscle, heart and spleen. Low levels in placenta, pancreas, thymus and peripheral blood leukocytes. According to PubMed:10608886, high levels in kidney, whereas according to PubMed:9923614, levels are low. High expression is observed in the adrenal cortex (PubMed:24601690).		
Sort :	23621		
No4 :			

Host :

Rabbit

Modifications :

Unmodified

Immunohistochemistry analysis of paraffin-embedded human breast carcinoma tissue, using TRXR2 Antibody. The picture on the right is blocked with the synthesized peptide.

нт29	117 85	Western blot analysis of lysates from HT29 cells, using TRXR2 Antibody. The lane on the right is blocked with the synthesized peptide.
TRXR2 Antibody		
	48	
	34	
	26	
	19 (kD)	